Monday, May 23, 2022

The Big 5 Causes of Natural Climate Change: part 4 Landscape Changes


Below is the transcript to the video 

 The Big 5 Causes of Natural Climate Change part 4 Landscape Changes 

available at

Welcome everyone

This is part 4 of the big 5 natural causes of climate change. In parts one thru 3 we detailed how ocean currents warmed the Arctic, how more La Ninas were warming the oceans and affecting jet streams. Here I examine the dynamics that warm the land.

Although most landscape changes are caused by humans, the intent here is show how landscape changes largely account for the land's temperature trends that have been incorrectly blamed on rising CO2.

Despite the cooler global average temperature, the earth's highest recorded temperature, 56.7 Celsius or 134 Fahrenheit was set in California’s Death Valley in 1913, due to landscape features present in most desert ecosystems.

Less vegetation and bare desert soils heat surfaces to greater extremes. You have likely experienced a similar effect when walking barefoot in the summer on a cool grassy surface and then, stepped onto burning asphalt pavement.

Dry regions also produce fewer clouds allowing greater solar heating than elsewhere.

The same amount of energy can raise the temperatures of dry surfaces much more than moist surfaces. And dark soils, reflect less and so absorb more solar energy than other surfaces

Similarly, urban heat islands form in part because urban development has created desert-like conditions.

Because urban heat islands amplify every heat wave and set new records, people living in urban centers are more easily seduced into accepting climate crisis narratives than people living in cooler rural regions.

The temperature of the air is determined by the temperature of the earth's surfaces.

1. The sun primarily heats the earth's surface, not the air

2. The air then gets heated by contact with the earth's heated surface.

       And that warmed air rises and warms the atmosphere above

3. At higher altitudes, the rising air radiates heat back to space and cools and sinks back to the surface

Any large- or small-scale conversions of ecosystems from forests to grasslands or grasslands to deserts increases the earth's skin surface temperatures.

With the advent of the satellite era, we now have global coverage of the earth's skin surface. But skin surface temperatures can be as much as 30 degrees Celsius hotter than conventional air temperatures measured 5 feet above the surface. This map of the earth's land surface maximum temperatures illustrates how solar heating and landscapes combine to determine skin temperatures

As expected, the coldest regions are at the poles represented in dark blue. But surprisingly for most people, the hottest maximum temperatures are not recorded at the equator, but elsewhere due to landscape effects.

This graph correlates the earth's ecosystems with surface temperatures.

Forest ecosystems cover the greatest area. The northern forest across Canada and Eurasia experience maximum temperatures centered around 20 degrees Celsius or 68 degrees Fahrenheit and the equatorial forests reach maximums centered around 30 Celsius or about 86 Fahrenheit.

Grasslands typically experience higher maximum temperatures, spanning 30 to 50 degrees Celsius. The prairies of north America illustrated in yellow are warmer than north Americas eastern forests but cooler than the western deserts

The hottest maximum temperatures are recorded in the deserts spanning 45 to 70 degrees Celsius. Death Valley's 56.7 Celsius record air temperature was observed in 1913. In 1922, 57.8 degrees Celsius was recorded in the desert of Libya breaking the Death Valley record.

However, because these extreme air temperatures happened 100 years ago and conflict with CO2 climate narratives, some researchers speculated that Libya’s temperature must have been incorrectly recorded, so successfully lobbied to remove it from the record books. There have been ongoing similar attempts to erase Death Valley's record temperature. Clearly those who control the present narratives, control the past.

Now with satellites measuring skin surfaces, the record hottest skin surface temperature of 70.7 Celsius (about 160 Fahrenheit) was recorded in 2005 in Iran’s Lut Desert, but it's not clear what the air temperature would have been.

The reason different ecosystems experience such different temperatures, even at the same latitude, is because of moisture.

The same amount of energy required to raise one gram of water one degree Celsius, measured here in joules, can also raise dry air by 4 degrees.

The same amount of energy that increases wet soil by one degree raises dry soil by 2 degrees

Likewise, that same amount of energy would raise asphalt by 2 degrees. In addition, asphalt and other dark surfaces absorb more energy.

Finally, 2200 times more energy is required to evaporate one gram of water without changing the temperature. Without moisture to evaporate, that energy instead causes surface temperatures to rise.

Any loss of vegetation, such as converting a forest ecosystem to an urban setting, will reduce evaporation and moisture, and thus generate heat islands.

Wetlands around the world have been increasingly drained and dried since global warming began in the 1800s.

In the 1800s California’s central valley was considered a marsh land represented by the yellows and greens. By the 1990s, over 90% of California’s wetlands were drained and dried. Irrigation has only partially offset the resulting warming effects

The most severe loss of wetlands in the United States are colored red. And the percentage of lost wetlands in each state is listed here.

California’s 91% loss was the greatest, but similar losses were observed in the Midwest from Iowa to Arkansas to Ohio. Florida only lost 46% of its wetlands but nearly 90% of the everglades.

Such losses were not confined to the USA. Globally 87% of surveyed wetlands have been lost since the 1700s. And that loss continues today.

Based on reconstruction of tree rings, there has been no change in the natural variations in rainfall, so increasing dryness has not been driven by human climate change. Griffin, in 2014, reconstructed rainfall patterns for the past 700 years from blue oak tree rings. The blue star and dashed line represent California’s extreme 2014 drought. The reconstruction revealed similar droughts happened about 3 times every century and some have been far worse than 2014, even during the colder Little Ice Age.

In addition to lost wetlands, degraded landscapes have reduced natural cooling that happens via transpiration. Over 60 to 80% of the globe's dry lands have been degraded by deforestation and overgrazing.

As human populations expanded by 7-fold since 1800, the demand for wood for heating and buildings grew, causing the area of deforestation to double.

In 2021, researchers from the US Forest Service compared the effects of the 2021 heat wave on undisturbed forests versus deforested and degraded forests.

In west Oregon undisturbed forests were 5.5 degrees Celsius (or 10 degrees Fahrenheit) cooler. Likewise in Washington state, the degraded forest plantations were 4.5 degrees warmer.

Thus, researchers concluded, "the loss and degradation of primary forests was driving regional climate change and amplifying the severity of heat waves and droughts.

This graphic illustrates the regions where deforestation and forest fragmentation have taken the greatest toll. (rust colored). Between 2002 and 2020 as populations grew, China lost over 6% of its forests

Southeast Asia, largely in Malaysia and Indonesia, have lost huge swaths of forest because misguided politics are subsidizing biofuels and promoting deforestation to plant palm oil.

In contrast, Scandinavia exhibits no fragmentation and a growing forest, and it has not experienced global warming

By reconstructing temperatures using Scandinavian tree rings, Esper 2012 concluded temperatures have been declining for the past 2000 years. The 3 warmest 30-year periods happened during the Roman Warm Period 2000 years ago, and the Medieval Warm Period 1000 years ago. Both were warmer than the recent 30-year warm period between 1920 and 1940.

Overgrazing has likewise warmed the land's surface skin temperatures. A 1994 study found overgrazed grasslands were 2 to 4 degrees Celsius warmer than well managed grasslands. and overgrazed north American grasslands were warming 63% faster than well managed grasslands.

The loss of grasslands in the 1930s contributed to the deadly Dust Bowl.

In contrast to the false narrative that global warming is causing more fires, more fires are, however, changing the landscapes, reducing transpiration, and warming the land. Southern California’s Malibu Canyon suffers 2 fires each decade as result of human ignitions.That has resulted in the loss of shrub lands, converting them into invasive grasslands that are both more easily ignited and increase skin surface warming

While studies show humans start over 84% of all wildfires, along California’s central and southern coasts, the growing human population has started 100% of the fires

To what degree these landscape changes bias the global average temperature upwards, depends on the proximity to any landscape changes, of the weather stations that contribute to that average,

As of 2011, the World Meteorological Organization oversees 11,119 weather stations, and to easily operate them these stations are associated with human habitat, not wilderness. The United States has the densest coverage and the most stations operating for 75 years or more (represented by red dots), the minimum time span needed to assess natural vs human climate changes.

For the rest of the globe, that coverage averages out to just one station for each area the size of the state of Connecticut. And that one weather station is assumed to represent all temperatures in the surrounding 5,000 square miles.

Urban areas represent less than 1% of the entire land surface of earth. However, 27% of the weather stations used to calculate climate change are in urban areas.

Urban heat islands are typically 2 to 3 degrees Celsius, or 5 to 6 degrees Fahrenheit, warmer than surrounding, well-vegetated suburban and rural regions. Urban heat islands are typically created by reducing vegetation and removing rainfall into storm drains while paving over moist soils and wetlands with asphalt and concrete.

Oddly, some studies, simply based on population size, argue rural and urban areas are equally warming and so blame rising temperatures on CO2. But those studies ignore the fact that even with smaller populations, rural areas are warming due to lost wetlands, deforestation, and overgrazing.

To robustly evaluate the warming effects of CO2, new studies must be done that account for the effects of those landscape changes,

These NASA photographs show the effect of urban centers versus more vegetated suburbs seen in green. The infrared photo shows the well vegetated suburbs are 10 degrees Celsius or 18 degrees Fahrenheit cooler

Again, it is no coincidence that it is typically urban dwellers suffering from urban heat islands who mistakenly support political parties that push a global warming climate crisis.

In addition to adding more vegetation, one solution to reduce urban heat islands, requires converting dark rooftops to white roof tops

Dark roofs absorb 16 times more heat than white surfaces. And hotter roofs generate hotter buildings

Dark roofs heat the atmosphere 4 times more than white surfaces Additionally hotter buildings emit more heat through the night increasing the nighttime minimum temperatures.

In 1988, Thomas Karl, who later became director of the National Climatic Data Center, published research showing that as an urban center's population increased, so did the early morning minimum temperatures, but not maximum temperatures

In a town of 10,000 people, the minimum temperature increased twice as much as a small-town of 2000 people. In a city of one million people, the minimum temperature increased 15 times more than the small town.

And although maximum temperatures decreased, the city's average temperature still increased 15 times more than the small town. As cities grow the altered landscape, added buildings, and streets of asphalt will store more daytime heat, which is then slowly released at night, and that best explains the asymmetric temperature trends.

Trying to evaluate how temperatures were affecting Sierra Nevada wildlife, I examined the temperature data from the nearest us historical climate network station in Tahoe City. Unexpectedly, but like Karl’s study, I found the maximum temperatures were highest in the 1930s and have been cooling since But minimum temperatures had been rising.

The Sierra Nevada was not getting hotter. Surfaces were just cooling less by early morning

Unfortunately, the commonly paraded temperature trends only present the average of the maximum and minimum and that misleading statistic hides the grossly different temperature dynamics.

Minimum temperatures are more sensitive than maximums to surface changes due to differences in daytime and nighttime convection. Solar heating during the day generates robust convection that carries heat away from the surface and upwards, to mix with cooler air above.

During the night, convection is greatly reduced so that air warmed at the surface is not diluted by mixing with cooler air above. Inversion layers often form that can trap heat, even preventing smoke from rising.

In 2013 I published this graph in my book of temperatures in Death Valley, from data supplied by the us historical climate network. The climate trends were very similar to that observed in the Tahoe City data and elsewhere in California, with the maximum temperatures peaking in the 1930s.

Death Valley's weather station shows it was sited in a more natural landscape in 1913 when its record maximum temperature was recorded, even though minimum temperatures were much lower.

As meteorologist Anthony Watts and his Surface Station surveys have revealed, even Death Valley has been affected by landscape changes. As Death Valley became a National Park and popular tourist spot, a visitor's center and several RV parks were added around the weather station. The observed rise in minimum temperature is again consistent with those land surface changes.

Death Valley is also a symbol of how fragile our temperature data has become as politics can outweigh science. The data I published had been previously adjusted for any known errors.

It was consistent with California’s regional climate trends observed in Tahoe city and Yosemite national park as well as other stations around the country.

Peak maximum temperatures were consistent with the EPA’s heat wave index that also peaked in the 1930s.

But in 2014, I got an email accusing me of misrepresenting the Death Valley data. When I checked, I found Death Valley’s data had been adjusted once again, and this time the 1930s warm peak was squashed

And Death Valley's temperature trend was now structured to align with the current CO2 global warming narratives.

Clearly those who control the present, control the past.

Up next: part 5 of the big 5 natural causes of climate change: clouds . Until then.... Embrace renowned scientist Thomas Huxley’s advice....

Skepticism is our highest of duties and blind faith the one unpardonable sin!

Thursday, May 12, 2022

The Big 5 Natural Causes of Climate Change pt 3 How La Nina Warms the World


Below is transcript to video:

view at

Welcome everyone

Today in part 3 of the big 5 natural causes of climate change, I want to demonstrate how more frequent La Ninas have warmed the world

La Ninas promote clear skies over the eastern pacific increasing solar heating. As a result, the eastern Pacific absorbs over 100 watts per meter squared more solar energy than it releases back to space. A similar but smaller energy imbalance occurs in the eastern Atlantic during Atlantic Ninas

The blue regions release more energy back to space than their surfaces absorbed. That excess energy was initially absorbed and transported from the tropics. Climate scientists agree any imbalance between the earth's absorption and release of energy can cause climate change.

However, the question is how much of that imbalance is caused by ocean dynamics vs increasing CO2 concentrations

In all peer-reviewed research the world's energy budget is measured in terms of watts, the flow energy per second. For example, a burning candle emits 80 watts. But step just one meter away from that candle and you will not feel its heat. So, to express the effects of heat energy, heat is measured in the amount of watts reaching a square meter of surface area, or watts per meter squared.

On average, the earth's atmosphere and surfaces absorb 240 watts per meter squared of solar energy.  

Claims of a climate crisis, are based on the belief that CO2 is causing the earth to retain just one more watt of solar energy than it releases back to space

But natural ocean dynamics also cause the earth to retain more absorbed solar energy than it releases back to space.

The greatest amount of heat absorption happens when the Pacific is in its neutral condition or a La Nina-like state which is simply a more extreme neutral state.

The trade winds blow warm waters across the Pacific and concentrate them in the western Pacific and Indian Ocean creating the warmest body of water on earth, the Indo-Pacific Warm Pool

That removal of water from the eastern Pacific allows cool sub-surface waters to upwell there. The cooler temperatures generate fewer clouds which increases the absorption of solar energy by 15 watts per meter squared

Furthermore, the resulting east to west temperature difference amplifies the trade winds causing positive feedback that favors maintaining La Nina like conditions.

Strong trade winds cause more heated water to be stored deeper in the western Pacific where the heat is inhibited from ventilating back to space.

Climate scientists are fully aware that this dynamic increases ocean warming, but only bring it to the public's attention when they blame the ocean for creating a hiatus in the rise of global average temperatures that contradicts simplistically based predictions of warming driven by rising CO2.

James Hansen is considered the godfather of the climate crisis. Initially he studied the climate on Venus, which is lifeless and devoid of water. So naturally his analyses and models of climate change are typically focused on greenhouse gases that affected Venus.

To his credit, Hansen admits this bias in his 2005 paper stating "our climate model is driven mainly by increasing human-made greenhouse gases and aerosols"

But Hansen also realized that regards the earth's climate, “one may find other combinations that yield warming comparable to that of the past century”

An increasing understanding of the effects of El Ninos and La Ninas is providing such an alternative combination of effects and a comparable alternative explanation for the warming that Hansen and his acolytes blame on CO2.

Hansen didn’t carefully examine those ENSO effects because as he stated his "coarse-resolution ocean models had been unable to simulate climate variations associated with El Nino–Southern Oscillation processes”

Now the improving understanding of El Nino & La Nina effects will likely cause the CO2 driven climate crisis claims to fall like a house of cards

Climate scientists have calculated the earth's energy budget, but it is plagued with large uncertainties. However, when trying to convince the public that their science is settled, illustrations such as this one posted by NASA, hide all those uncertainties.

Fortunately, the budget calculations by Stephens 2012 exhibited more integrity and highlighted those uncertainties.

NASA's yellow arrows show incoming absorbed and outgoing reflected solar radiation NASA's red arrows show the outgoing infrared and the back radiation from greenhouse gases that recycle the infrared and delay the rate of the earth's cooling

Nonetheless, eventually nearly all the infrared energy escapes back to space; Except an estimated mere 0.6 watts per meter squared, but with an uncertainty of + or - 0.4 watts

Regards how much energy the ocean stores and releases, the uncertainty is huge. The uncertainty of the cooling effects by evaporation alone, or latent heat, is + or - 10 watts, overwhelming the estimate of a CO2 driven energy imbalance.

During the Little Ice Age, the oceans cooled for about 400 years. The Pacific was mostly in a persistent El Nino-like state, a condition that reduces how much heat is stored at depth relative to a La Nina like state. Solar minimums reduced the trade winds which the El Nino like state further weakened.

One result of an El Nino-like ocean is the reduction of upwelling that brings nutrients to the sunlit layers. Thus, during the Little Ice Age the Pacific exhibited low biological productivity.

Then in the early 1800s as solar irradiance rose the ocean entered a more La Nina-like state, increasing upwelling and ocean productivity.

A switch to a more persistent La Nina-like state amplifies the trade winds and raises sea levels in the western Pacific. Accordingly, between 1993 and 2010 satellites observed western pacific sea levels rising many times higher than the global average.

The stronger winds of an La Nina-like state drive more warm water into the western Pacific, increasing the size and the depth of the Indo-Pacific Warm Pool. The warm pool's growing heat is then transported around the world.

Oceans can warm just by reducing the overall cooling rate, even if there is no increase in absorbed heat.

During La Ninas, more heat is stored at depths, typically up to 200 meters, and those depths inhibit ventilation of that heat.

But the estimated 3 Watts/m2 of infrared heat from the back-radiation of greenhouse gases, never penetrates more than a couple of microns below the surface.

For reference, a human hair is about 70 microns thick. And 1000 microns equal just one millimeter

In contrast hundreds of watts from sunlight energy can penetrate 10 million times deeper. Depending on how clear the water is, the shorter wavelengths of sunlight can penetrate to 100-meter depths.

In general, a steady cooling of the ocean is controlled by a one-millimeter-thick layer at the surface. In addition, storms like hurricanes will episodically pull heat from the deeper layers.

Depending on depth of sunlight penetration, a layer up to 100 meters thick warms the ocean each day.

But that absorbed heat can only radiate away via the surface gateway that is less than 100 microns thick, termed the electromagnetic skin layer

In addition, heat can leave the ocean via contact with the air or via evaporation, which only happens from the 100-micron thick layer termed, the thermal skin layer

Because this upper layer is always losing heat, it is cooler than the diurnal warm layer below and is sometimes called the cool skin layer. This cooler skin surface ensures the flow of heat is almost always from the warmer ocean layers back into the atmosphere.

As a result, the micron thick layer that absorbs greenhouse infrared is always ventilating any absorbed heat back to the atmosphere, in contrast to the deeper and warmer solar heated layer.

So, it seems virtually certain that any change in ocean warming must be driven by solar changes, and not from any changing concentrations of greenhouse gases.

During an El Nino event hot water in the western warm pool sloshes eastward across the pacific. Heated waters that had been stored at depths in the west is brought closer to the surface in the east. Where strong evaporation ventilates a portion of that heat and cools the ocean.

As that warm pool-heat then warms the eastern Pacific, it also reduces the trade winds, and sometimes, even reverses the trade winds’ direction creating feedback that prolongs an El Nino-like state.

Largely governed by the winds, the amount of transported hot water varies from year to year. In the 1600s, Peruvian fisherman named that warm water arrival "El Nino”, referring to baby Jesus, because the flow of warm water arrived each year around Christmas time.

Because El Ninos and La Ninas affect the winds and the jet streams and thus extreme weather patterns as detailed in part 2 of this series, to improve weather forecasting scientists measure changes in temperature within the Nino 3.4 area for statistical purposes.

When temperatures rise 0.5 degrees Celsius above average for about 5 months, an El Nino is declared. When temperatures drop 0.5 degrees Celsius below average a La Nina event is declared. The greater the departure from average the stronger the events effects.

Scientists also classify El Ninos according to the varying distance across the pacific that the heated water travels

Graphs of the globally averaged air temperatures are very sensitive to the heat released by El Ninos.

El Ninos are clearly seen as temperature spikes.

To naive journalists and the general public such warm spikes appear to confirm the coming global warming crisis. But such graphs obscure real climate dynamics As Kevin Trenberth, a chief architect of global warming theory admits, El Ninos are not just temporarily ventilating ocean heat, but cooling the earth's entire climate. 

On the other hand, the cooler temperatures in the graph are associated with neutral conditions and La Ninas due to the upwelling of cold subsurface waters. Paradoxically that's when the ocean is warming.

Clearly because natural El Ninos and La Ninas have such critical effects on climate change, we would expect much more of the earth's warming to be attributed to ENSO dynamics.

But the reason CO2 gets the blame instead is quite clear. After more than a decade since James Hansen admitted the inability of climate models to reproduce El Nino La Nina ocean dynamics, climate models still do not accurately simulate them. As published by climate scientists Michael Mayer, Trenberth, and others in 2016

"All climate models greatly underestimate changes in Pacific Ocean heat content"

"And climate models underestimate the redistribution of heated waters between varying depths and between the eastern and western ocean.

"So, it is highly likely that climate models also underestimate La Nina’s contributions to the steady increase of heat in the Indo-Pacific Warm Pool as well as underestimating the century rise in the average global temperature since the Little Ice Age termination when the pacific entered a more La Nina like state.

Although an El Nino event lasts for about a year, its redistribution of heated water has much longer lasting effects associated with the pacific decadal oscillation

The heated water that sloshed to the eastern Pacific doesn’t completely cool, causing the eastern tropical pacific to remain abnormally warm for 20 to 30 years. The reduced trade winds and other circulation changes reduce transport of warm waters to the northern pacific making it abnormally cool. This pattern of ocean surface temperatures is labeled the positive phase of the pacific decadal oscillation and strongly alters weather patterns, especially for western north America

As an El Nino's residual warm waters continue to cool or get transported back to the western pacific, the trade winds gradually increase, and the resulting upwelling cools the eastern pacific further. Circulation changes now pump more warm water into the northern Pacific. The resulting reversed temperature pattern is called the negative phase of the Pacific Decadal Oscillation and it amplifies the wavy jet stream over western North America increasing the probability of drought and heat waves.

The net increase in warm pool and global temperatures can be explained by an El Nino/La Nina Amplification effect

During an El Nino, heated warm pool water moves eastward primarily along the North Equatorial Counter Current.

As El Nino gives way to more neutral and La Nina conditions, much of El Nino's residual warm water then re-circulates back to the warm pool via the north equatorial current and is reheated. This reheated water is slightly warmer than the heated cold-upwelled waters that largely fill the warm pool.

Some of that reheated water also circulates northward to warm the northern Pacific.

An independent climate researcher and author, Bob Tisdale, was the first to recognize the higher temperature effects resulting from a La Nina-like state reheating residual warm waters from an El Nino event.

The re-circulation and re-heating of residual warm El Nino waters results in a gradual stepwise warming of ocean temperatures after each El Nino event.

The accumulating heat in the warm pool, then feeds the Ocean Conveyor Belt that transports that heat into the Indian Ocean, then the Atlantic and up into the Arctic as illustrated by the red loop.

Higher sea levels in the western Pacific during La Ninas help push warm pool waters into the Indian Ocean. A portion of those waters are further heated in the Indian Ocean, which then get transported around southern Africa into the Atlantic – a dynamic referred to as the Agulhas leakage.

Recent studies have detailed the pathway of Agulhas Leakage water into the Arctic

First across the southern Atlantic, then across northern brazil's coast and into the Caribbean, then up the east coast of North America and into the Arctic – linking La Nina warming to Arctic sea ice fluctuations.

Oscillations in the Agulhas Leakage correlate with the Atlantic Multidecadal Oscillation, which correlates with lost Arctic sea ice, as detailed in part one of this series. That lost ice allowed more stored Arctic heat to ventilate and increase the global temperature much like the ventilation of deep warm pool waters also raises global temperatures.

As Hansen unintentionally predicted in 2006: “other combinations" such as discussed here, the transport of solar heated waters heated by more frequent La Nina events, can yield alternative causes that explain a comparable warming.

Up next: part 4 of the big 5 natural causes of climate change: landscape changes

Until then embrace renowned scientist Thomas Huxley’s advice: “skepticism is the highest of duties; blind faith the one unpardonable sin"