Translate

Monday, December 15, 2014



Why Vanishing Ice Is Likely All Natural?
 (transcript for  video: Vanishing Ice Most Likely All Natural)

A list of reviewed papers used for this presentation available at http://landscapesandcycles.net/shrinkingice.html

Mount Kilimanjaro from Vanishing ice all natural by Jim Steele
Mount Kilimanjaro

If we are to truly prepare for the dangers of climate change and build more resilient environments, we must first understand natural climate change. Unfortunately due to the narrow focus on rising CO2, the public remains ill-informed and fearful about the causes retreating ice. Africa’s Mount Kilimanjaro and America’s Glacier National Park are 2 iconic examples of failed climate interpretations. For example, Al Gore’s “Inconvenient Truth” suggested warmth from rising CO2 had been melting Kilmanjaro’s glaciers. In truth, instrumental data revealed local temperatures have never risen above the freezing point. In 2004, Dr. Geoff Jenkins, Head of the Climate Prediction Programme at England’s Hadley Centre, was prompted by the evidence of no warming, to email the IPCC’s Phil Jones and ask and I quote “would you agree that there is no convincing evidence for Kilimanjaro glacier melt being due to recent warming (let alone man-made warming)?” Yet due to the politicization of climate science, Al Gore shared the Nobel Prize despite perpetuating the global warming myth of Kilimanjaro.
Glacier experts from the University of Innsbruk published and I quote, “The near extinction of the plateau ice in modern times is controlled by the absence of sustained regional wet periods rather than changes in local air temperature on the peak of Kilimanjaro.” Changing patterns of precipitation were recorded in the water level of nearby Lake Naivasha. As researchers documented in this graph, the region had experienced increasing precipitation during the Little Ice Age, followed by a sharp drying trend that began in the late 1700s, which triggered Kilimanjaro’s retreat long before CO2 ever reached significant concentrations. 
Ice structures such as these penitentes, are commonly seen in many high elevation glaciers, and help scientists determine if retreating ice was caused by below freezing sublimation, or melting from warmer air. Over decades, sublimation creates sharp features at the border between sunlight and shade. In contrast, any melting from warm air temperatures oozes across the icy surface destroying those sharp features in a matter of days. So the presence of sharp-angled features like these penitentes, are excellent long term indicators of dry and below freezing temperatures.
Penitentes from Vanishing Ice Most Likely All Natural by Jim Steele
Penitentes 
Over 30 years ago I visited Glacier National Park, home of the 2nd iconic example of misrepresented glacier retreat. After thousands of years with less ice, the park’s glaciers grew to their maximum extent during the Little Ice Age. Then they began retreating around 1850. Although the media now hypes the park’s disappearing glaciers as evidence of CO2 warming, the greatest retreats happened long before CO2 could exert any possible effect. In 1913 the park’s largest glacier, the Sperry Glacier was nearly 500 feet thick at a point that would soon become its 1946 terminal edge. By 1936 that thickness had dwindled by 80%. That rapid retreat prompted scientists 70 years ago to predict a natural disappearance of the park’s glaciers
As seen here, the contrast between the early and late 20th century retreat is striking. Between 1913 and 1945 the rate of retreat for the Sperry glacier was 10 times faster [due to drought] than rate of retreat since 1979. If rising CO2 has been the driver of recent melting, we would expect an increasingly faster rate of retreat, not slower!  If we are to prepare for changes caused by melting ice, we must view our vanishing ice from a perspective of centuries and millennia, and tht perspective insists that we understand natural climate change.

 There is an abundance of evidence demonstrating that relative to today, far less ice covered the globe during the last 10,000 years, a period known as theHolocene.[i.e. here and here) Far less ice despite much lower CO2 concentrations.
Likewise, although most of today’s average global temperature has been driven by heat ventilating from the Arctic Ocean, as visualized in this NASA graphic, Arctic temperatures were also far warmer during most of the Holocene. Based on changes in tree line, pollen samples and ocean sediments, scientists estimate Arctic air temperatures during the mid Holocene averaged 2 to 7°C higher than today. 
This ice core data from Greenland, exemplifies the Holocene’s changing temperature patterns common for most of the Arctic. But it is a pattern that also corresponds to climate change in many other regions across the globe. After the last Ice Age ended, the period of warmer temperatures between 9,000 and 4,000 years ago has been dubbed the Holocene Optimum. During that time, remnant glaciers from the Ice Age retreated and shrank to sizes far smaller than we witness today. All of Norway’s glaciers completely disappeared at least once, and Greenland’s greatest glaciers, like the Jakobshavn, remained much further inland than now observed. Like many northern glaciers, Jakobshavn had only recently advanced past its present terminus during the unprecedented cold of the Little Ice Age.  
  
GISP2 Holocene Temperature data vs CO2 trend from Jim Steele
Greenland GISP2 Holocene Temperature data vs CO2 trend 
From whale bonesArctic driftwood, and patterns of Arctic shoreline erosion,we also know that during the Holocene, Arctic summer sea ice retreated 1000 kilometers further north than seen today. Treelines advanced to their greatest northern limits, reaching Arctic Ocean shores 9000 years ago, hundreds of kilometers further north than their current limits.
The paleo-eskimos, or Tuniit, colonized the Arctic’s shoreline about 5000 years ago. They hunted Musk Ox and Caribou with bow and arrow. They lived in tents and heated those tents with Wood. Archaeologists studying Tuniit colonization of Arctic shores, reported periodic abandonment and occupation that corresponded with periods when summer sea surface temperatures bounced between 2–4° cooler and 6°C Warmer than present. Likewise, concentrations of Arctic summer sea ice ranged from 2 months more sea ice to 4 months more open water.
Changes in insolation due to the sun’s orbital cycles, or Milankovitch cycles, correspond with the recent 100,000-year cycles of past major ice ages. We are currently in another warm peak. The Milankovitch orbital cycles also predicted the current cooling trend that began about 4000 years ago. However warm spikes due to high solar output punctuated this cooling trend roughly every thousand years.  The unprecedented Holocene glacier growth during the Little Ice Age occurred when solar output was extremely low.

Past 300 years of solar flux 
In this graph depicting 300+ years of solar flux, the earth warmed as we ascended from the Little Ice Age. Our recent warm spike coincides with high solar flux. However, recently solar output has again retreated, approaching Little Ice Age levels, and correlates with the increasing frequency of cold winters. The next two decades will allows us to evaluate more accurately the effect of these solar changes on climate and glaciers.
The correlation between Greenland ice core data and solar flux, is also seen inScandinavian tree ring data. Tree rings suggest the warmest decade in the past 2000 years, happened during the warm spike of the Roman Warm Periodbetween 27 and 56 AD. After a period of resumed cooling a new warm spike occurred 1000 years ago during the Medieval Warm Period.  After more extreme cooling during the Little Ice Age, a third warm spike peaked around the 1940s.  Most interesting, the consensus from multiple tree ring data sets around the world, also suggest natural habitats were warmer during the 1940s than they are now. Likewise, the greatest rates of retreat for glaciers from Glacier National Park to the European Alps also happened during the 1940s.
The Great Aletsch, the largest and best studied of all the Swiss Alp’s glaciers beautifully illustrates the 3000-year cooling trend punctuated with periodic warm spikes that caused rapid glacier retreats. The Great Aletsch’s maximum length during the Holocene was also reached during the Little Ice age. About 1850 it began retreating to its current position, represented by this baseline. 
However during the warmth of the Bronze Age 3000 years ago, the glacier was Much smaller than today. During the cooler Iron Age the glacier began to grow, but rapidly retreated during the warm spike of the Roman Warm Period. The glacier advanced again almost reaching its Little Ice Age maximum, but retreated rapidly during the warm spike during the Medieval Warm Period.

Great Aletsch in Vanishing Ice All Natural by Jim Steele
Great Aletsch: 3000 years of advances and retreats
  During the Little Ice Age, the Great Aletsch advanced to its greatest length of the Holocene, in rhythm with a series of 4 documented solar minimums. Each advance was followed by a rapid retreat, similar to what we observe today,  when solar flux increased.
The glaciers recent retreat does not appear any different from retreats in past. So what does that tell us? To be clear the skeptic argument is not “because it was natural before then CO2 can not possibly contribute today”.
The skeptic argument is simply, we can not determine the sensitivity of our climate and glaciers to rising CO2, until we have fully accounted for past and present natural dynamics. Far too often the media, and a few invested atmospheric scientists, simply assert that retreating glaciers were all natural in the past, but since 1950 the retreat is suddenly due to CO2. But past natural climate dynamics did not suddenly stop operating in 1950. To what degree are natural climate dynamics contributing today? Well, more recent patterns of advancing and retreating ice suggest natural dynamics are the main drivers of today’s retreating ice
A century of mass change measurements for several Swiss glaciers allow us to more finely resolve changes between decades. Again the greatest rate of 20thcentury retreat occurred during the 1930 and 40s, and once again, before CO2 concentration had any significant impact. The rapid 1940s retreat is linked to unusually high solar insolation and patterns of precipitation governed by theAtlantic Multidecadal and North Atlantic Oscillation. 

Swiss Alp glacier advances and retreats by Jim Steele
Swiss Alp glacier advances and retreats
Furthermore when solar flux dipped between the 1960s and 80s, a high proportion of Alpine glaciers, as well as glaciers around the world, stopped retreating and many began to advance as seen here in the Alps.
Changes in solar insolation affect oceans in two critical ways. During high solar output of the Medieval Warm Period, tropical waters in both the Atlantic and Pacific increased by as much as 1°C warmer than today. During the solar minimums of the Little Ice Age, tropical oceans dropped by as much as 1°C degree cooler than today. But equally important changes in insolation affected the volume of warmer tropical waters that were transported toward the poles.
Multiple lines of evidence correlate higher solar activity during the Roman and Medieval Warm Periods, with an increased flow of warm Atlantic water into the Arctic, resulting in reduced sea ice. Conversely, during low solar activity during the Little Ice Age, transport of warm water was reduced by 10% and Arctic sea ice increased. Although it is not a situation I would ever hope for, if history repeats itself, then natural climate dynamics of the past suggest, the current drop in the sun’s output will produce a similar cooler climate, and it will likely be detected first as a slow down in the poleward transport of ocean heat. Should we prepare for this possibility?
Water heated in the tropics is saltier and denser, and when transported into theArctic lurks 100 to 900 meters below the surface. That warm subsurface water can melt sea ice and undermine grounding points of submerged glaciers causing an acceleration of ice discharge. Intruding warm deep water also melts the underside of floating ice shelves, which also accelerates calving and ice discharge.
Instrumental records of Greenland’s air temperatures, also recorded the fastest rate of warming during the 1930s and 40s coinciding with increased inflows of warm Atlantic water. Accordingly intruding warm waters alsotransported more southerly fish species, prompting the birth of Greenland’s Cod fishery. CO2 driven models have completely failed to simulate this Arctic warming.
Simultaneously the best studied Greenland glacier, the Jakobshavn, began retreating from its Little Ice Age maximum with it fastest observed retreat of 500 meters per year between 1929 and 1942. The rapid retreat was amplified when the glacier’s terminal front became ungrounded from the ridge. That earlier grounding point had previously prevented warm subsurface waters from entering its fjord. With more warm water entering the fjord, the grounding point rapidly retreated.
When warm water intrusions subsided, the glacier stabilized, and even began advancing between 1985–2002. Although the recent retreat of Greenland’s glaciers is reported as an acceleration relative to the 70s, the rate of retreat is now much slower than the 30s and 40s. And again the 20th century pattern of retreat does not correlate with rising CO2 concentrations.
Warm Water Flow into the Irminger Current Vanishing Ice All Natural
Warm Water Flow into the Irminger Current
The 20th century pattern of Greenland’s melting glaciers correlates best with the timing and distribution of intruding warm Atlantic water. As seen in these illustrations, due to changes in the North Atlantic Oscillation in the 1990s, a sudden influx of warm Atlantic water entered the Irminger Current. The numbers here indicate that the current’s temperature cooled from 10°C to 1.5°C above freezing as it traveled along Greenland’s coast.

Lost Ice Mass from Grace satellite data in Vanishing ICe All Natural Jim Steele
Lost Ice Mass from Grace satellite data
As seen here from recent satellite estimates, the amount of Greenland’s lost continental ice, coincides with the warmth of the Irminger Current, with pinker areas representing the highest rates of lost ice.
Warm Atlantic waters that don’t enter the Irminger Current, continue deeper into the Arctic, mostly via the Barents Sea.  Greater volumes of intruding warm water cause greater reductions of ice in the Barents and Kara Seas, deep inside the Arctic Circle. Danish Sea Ice records reveal a similar loss of sea ice during the 1930s rivaling the recent decline.
Coinciding with cycles of reduced sea ice, glaciers on the island Novaya Zemlyain the Barents Sea, also underwent their greatest retreat around 1920 to 1940.  After several decades of stability, its tidewater glaciers began retreating again around the year 2000, but at a rate five times slower than the 1930s. The recent cycle of intruding warm Atlantic water is now waning and if solar flux remains low, we should expect Arctic sea ice in the Barents and Kara seas to begin a recovery and Arctic glaciers to stabilize within the next 15 years.
The contrasting behavior of Antarctic Ice is further confirmation that intruding warm water is a natural driver of melting polar ice. Unlike ice that melted deep inside the Arctic Circle, Antarctic Sea Ice has increased to record extent and expands far outside the Antarctic Circle. Why such polar opposites? Because Antarctica is shielded from intruding warm waters by a Circumpolar Current.
Antarctica’s Circumpolar Current consists of warm subtropical waters driven eastward by westerly winds. Because there are no continents to block its path or deflect those warm waters poleward, the Circumpolar Current simply encircles the continent. The one place where Antarctic sea ice has retreated slightly, only occurs along the western side of the Antarctic Peninsula where the Circumpolar Current makes its closest approach.
Likewise without intruding warm waters, Antarctica has lost far less continental ice than Greenland. Although Antarctica contains 14 times more ice than Greenland, Greenland has lost between 2 and 5 times more ice than Antarctica. Based on changes in gravity, most areas of Antarctica have slightly gained ice designated by greenish tones. However where warm waters and winds of the Circumpolar current approach the Peninsula, there has been moderate ice loss designated by bluish tones. And despite being Antarctica’s most poleward coastline, there has been a great loss of glacier ice around the Amundsen Sea, illustrated by redder tones, causing a net loss of ice for the continent.
Antarctic Basal Melt Hot Spots Vanishing Ice All Natural
Antarctic Basal Melt Hot Spots 
The reason for this concentrated melting is due to the upwelling of relatively warm Circumpolar Deep Water that lurks 300 feet below the surface. Glaciers along the Amundsen Sea terminate in deep water, and are most susceptible to periodic upwelling of that warmer deep water, which causes basal melting.
Maps pinpointing regions with the greatest basal melt, highlighted here by red dots, coincide with the greatest loss of glacier ice along the Amundsen Sea hot spot. Amundsen glaciers are grounded along the coastal shelf where ancient channels can direct warm, upwelled deep water directly to the base of the glaciers. Early explorers reported excessive crevasses and concave surfaces on these glaciers suggesting extreme basal melting was happening in 1950s, and was likely a process that has been ongoing on for millennia. Much like Greenland’s  Jakobshavn glacier, once Amundsen’s glaciers retreated from their Highest ridge on the continental shelves, upwelled warm water could overflow the ridge and melt an increasingly larger cavity near the glaciers grounding points. In turn, a larger cavity allows even more warm water to enter. In contrast, the few Amundsen Sea glaciers with grounding points located beyond the reach of upwelled waters, those glaciers have not lost any ice.
Like the rhythm of retreating and advancing glaciers, rates of sea level rise have ebbed and flowed as seen in this graph from the IPCC. Again it is the 30s and 40s that experienced both the greatest retreat of glaciers and the fastest rise in global sea level. With the recent decline in solar flux and the shift to cool phases of ocean oscillations, natural climate change suggests that although glacier retreat and sea level rise will likely continue over the next few decades, the rates of sea level rise and glacier retreats will slow down.The next decade will provide the natural experiment to test the validity of competing hypotheses. Are changes in the earth’s ice  driven by natural or CO2 driven climate change. I am betting on natural climate change.   
Rates of Change in Sea Level  in Vanishing Ice All Natural JIm Steele
Rates of Change in Sea Level 



Sunday, December 14, 2014


Fabricating Climate Doom: Hijacking Conservation Success in the UK to Build Consensus!


Adapted from the chapter  Deceptive Extremes in Landscapes & Cycles: An Environmentalist’s Journey to Climate Skepticism by Jim Steele 


Reposted from August 2013


What Good Conservation Science Reported


Good stewards of the environment are compelled to engage in good science. In 1980, butterfly experts in the United Kingdom predicted that both the Silver-spotted Skipper and the Large Blue butterfly were doomed to extinction. The widespread Silver-spotted Skipper was gradually restricted to just 46 locations. The more rare Large Blue had been declining from over 90 estimated colonies supporting tens of thousands in the 1800s to just two colonies and about 325 individuals by 1972. The question that had continuously eluded conservationists was why? Disturbed by repeated failures to correctly identify the causes of the decline, Dr. Jeremy Thomas embarked upon extensive research that ultimately unraveled the mystery. It is a model of superb scientific research and demonstrates why good environmental stewards must employ carefully detailed studies. For those of you who enjoy bizarre nature stories, the life of the Large Blue is a fascinating tale of deception and betrayal in which plump, seemingly helpless caterpillars turn the tables on voracious ants. And oddly enough, despite global warming, the Large Blue went extinct in England because its microclimate had cooled.
In earlier attempts to stave off the Large Blue’s extirpation, UK conservationists had protected nine areas in order to minimize any human impact on the remaining populations. However this habitat protection uncharacteristically failed to slow the species’ decline, so conservationists inferred that the most likely culprits must be unscrupulous butterfly collectors who were trying to cash in on the value of its increasing rarity. So conservationists hurriedly erected protective fences, only to watch hopelessly as the last population continued to decline. Ironically, the fence itself, not greedy collectors, was the final nail in the Large Blue’s coffin.1
Europe’s Large Blue belongs to a group of butterflies whose survival has been eternally entwined with the fate of local ants. In a process that sounds lifted from a Disney or Pixar screenplay, Large Blue caterpillars summon ant bodyguards with special calls and scents. The discovery of talking caterpillars is a fascinating story in itself, but the story gets better. Upon arriving, the summoned ants are fed with a sugary reward oozed from special pores in the caterpillar’s bodies. The caterpillars also exude intoxicating chemicals that make their new ant bodyguards more aggressive against other less friendly ant species.
One species of the Blues not only beckons the ants to come to its protection, but then seduces the ants to carry it into the ant colony. Once inside, the caterpillar then mimics the sounds of the queen ant, demanding to be fed in royal ant fashion. This is not quite the royal treatment imagined by humans: the caterpillar’s instinctual impersonation induces the worker ants to approach and regurgitate their stomach contents, upon which the caterpillar gratefully dines.
The Large Blue’s relationship with ants has an added twist more reminiscent of a grade B movie depicting the horrors of adopting a mysterious orphan. After hatching, Large Blue caterpillars feed on their host plant just as all other caterpillars do. And like other species of Blues, they soon drop to the ground to summon and then mesmerize a local ant species. Because the ants’ worm-like larvae resemble the size and shape of the early stage of these caterpillars, the intoxicating charade is sufficiently convincing, and the ants quickly carry the caterpillar into their nest.
Once the caterpillar is safely nestled into the ant’s nursery, the hideous betrayal commences. One by one the ungrateful adoptee devours the ant’s larvae. The Large Blue’s very existence has evolved to become completely dependent on eating “baby ants.” And only this one species of ant will do. Ironically, these butterflies often cause the extirpation of the adopting ant colony, which in turn limits the butterfly’s population.

Jim Steele Parmesan hijacks conservation success
Large Blue Caterpillar Feeding on Ant Larvae
Earlier conservation solutions had been simply based on the prevailing biases that failed to prevent extinction. Thomas lamented, “every hypothesis [collectors, insecticides, fragmentation, inbreeding, climate, pollution] on which the conservation measures of the previous 50 years had been based was untenable.” 
To be kind to those earlier researchers, the critical changes in the Large Blue’s protected habitat were barely perceptible. These changes created a baffling illusion that something was oozing across the boundaries of their protected conservation areas and decimating the species. So blaming collectors, pollution, climate change, or disease made sense simply because those phenomena readily cross artificial boundaries. But further observations never supported these suspicions. To unravel the Large Blue’s extinction mystery, Jeremy Thomas painstakingly identified and measured every possible confounding factor that might affect not only the butterfly directly, but also its host plants and the host ants. In addition to general weather variables, he tallied the various local ant species, measured temperatures above and below ground, differences in turf height, plant species composition, and the amounts of bare ground available.
It was laborious and detailed work, but exactly what good science dictates. Why the real agent of extinction had gone unnoticed finally became clear. Thomas discovered that just a few millimeters of change in the height of the grass, during the spring and autumn, could lead to the butterflies’ local extinction. The species of ants that the Large Blue plundered requires a very short grass habitat, which allowed the sun to warm the soil and their underground colony. When the grass grew from 1 to 2 centimeters, the temperatures just below the surface in the ants’ brood chamber dropped by 3–5°F. When the turf exceeded 3 cm, the microclimate below the grass cooled enough that competing ant species overran the Large Blue’s host ants. Three centimeters is less than your little finger, so such a small change in the height of the grass had been understandably overlooked.
Over the years, as more efficient animal husbandry reduced sheep and cattle grazing, pastures were increasingly abandoned. Biologists assumed that as more pastures returned to their natural state, wildlife biodiversity and abundance would also increase. That assumption is often true, but without human management, not only did the grass grow taller, but shady trees and shrubs soon invaded. The increasing shade was killing not only the Large Blue but was also endangering a diverse array of the United Kingdom’s other warmth-requiring butterflies like the Silver-spotted Skipper.
In addition to reduced grazing, earlier attempts to control UK rabbit populations added to the demise of these warmth-loving butterflies. Rabbits are not native to the British Isles, or to Australia, but had been introduced long ago as a source of meat. As growing populations of escaped rabbits competed for grasslands with the sheep and cattle (also nonnative), people attempted various forms of pest control. In Australia, humans erected the “great rabbit fence” to separate western and eastern Australia. Eventually, they turned to germ warfare, employing a newly discovered myxomatosis virus, which decimated the Australian rabbit population. In France a bacteriologist introduced the disease to rid his estate of rabbits. It then quickly spread, killing 90% of France’s native rabbit population. The virus then spread, either naturally or intentionally, into Great Britain. By the mid 1950s it had devastated the rabbit populations there. With fewer cattle, fewer sheep, and fewer rabbits grazing, the grasslands became increasingly overgrown, and warmth-loving butterflies became increasingly scarce. Not realizing the importance of grazers, the well-intentioned conservationists who had erected the protective fence unwittingly destroyed that which they sought to protect.
Once informed by the detailed work of Jeremy Thomas and his colleagues, by 1980 conservationists had begun efforts to successfully reintroduce the extinct Large Blue. Government subsidies and environmental schemes were enacted to encourage grazing, while conservationists mowed abandoned pastures to the optimum turf height. Individuals from Large Blue populations that still survived in Sweden were shuttled to England’s “terra nova” for a second chance. Under careful management, the reintroduced Large Blue is slowly rebounding.
But why should people need to intervene so directly and so intensively? Why couldn’t the Large Blue and other butterflies just exist “naturally”? Another ironic twist to this story is that humans actively created much of England’s grasslands, starting between four and six thousand years ago when new colonists introduced farming and grazing to England. To feed their sheep and cattle, early Britons increasingly cut down the natural forests that had once covered most of Great Britain. These human-generated grasslands were then maintained by grazing sheep and cattle that ate the sprouts of any trees that dared to recolonize. Similarly, the Victorians set fires to clear much of Scotland’s forest to encourage heather for grouse hunting. Much of Great Britain’s “natural” habitat is actually the product of millennia of human design. To maintain human-made biodiversity requires human stewardship.

Metamorphosing Conservation Success into Climate Alarm


“We search for a climate fingerprint in the overall patterns, rather than critiquing each study individually 3
Dr. Camille Parmesan, University of Texas

While serving on the Intergovernmental Panel on Climate Change (IPCC), Dr. Camille Parmesan (whose work was introduced here Fabricating Climate Doom – Part 1: Parmesan’s Butterfly Effect) issued the paper “A Globally Coherent Fingerprint of Climate Change Impacts Across Natural Systems.” In contrast to Jeremy Thomas’s detailed investigations, Parmesan again advocated that biologists should ignore local details. She wrote, “Here we present quantitative estimates of the global biological impacts of climate change. We search for a climate fingerprint in the overall patterns, rather than critiquing each study individually.” However, critiquing individual studies is always the essential first step. Otherwise the overall pattern will be distilled from faulty information. And in order to support her supposed pattern of global warming disruption, she again omitted crucial contradictory details.
Parmesan tactfully offered lip service to altered landscapes, but stated that her “probabilistic model” accurately separated the effects of land use from climate change. To demonstrate her model’s power, she wrote, “Consider the case of the silver-spotted skipper butterfly (Hesperia comma) that has expanded its distribution close to its northern boundary in England over the past 20 years. Possible ecological explanations for this expansion are regional warming and changes in land use. Comparing the magnitudes and directions of these two factors suggests that climate change is more likely than land-use change to be the cause of expansion.” That was a very odd claim.
This was the very same Silver-spotted Skipper that Jeremy Thomas’ detailed studies and subsequent conservation prescriptions had saved from extinction along with the Large Blue. Parmesan was hijacking a conservation success story to spin a tale of climate disruption. Her “proof” that climate change was driving the Silver-spotted Skipper northward came from the work of her old friend C.D. Thomas, known for predicting that rising CO2 levels had committed 60% of the world’s species to extinction.5 Using a mesmerizing statistical model, C.D. Thomas argued that because the Silver-spotted Skipper “needs warmth,” only global warming could account for its recent colonization of a few cooler north-facing slopes of England’s southern hills.
The Skipper is indeed fond of hotter south-facing slopes. However, the butterfly had historically inhabited cooler northern slopes if those slopes had been grazed. Like the Large Blue, the Skipper had disappeared from both cool north-facing slopes and warm south-facing slopes whenever the turf grew too high.6,7 C.D. Thomas’ model was statistically significant only if he ignored recent conservation efforts to promote warmer, short-turf habitat. At the end of his paper, relegated to his methods sections, he quietly stated, “we assumed that grazing patterns were the same in 1982 as in 2000.”4Parmesan and C.D. were guilty of grave sins of omission.
I emailed Dr. Jeremy Thomas regarding the study by C.D. Thomas and asked, “I assume due to earlier collaboration, you are aware of the habitat his study referenced? If so, is his implied assumption of no changes to turf height valid?” He replied, “No, it's not valid.There was a massive change in turf height and vegetation structure …between 1980 and the 1990s onwards for 2 reasons. (emphasis added)” First, since the 1986 paper, several of the key surviving sites were grazed more appropriately by conservationists and most of them, and many neighbors, are today in “agri-environmental schemes” to maintain optimum grass heights. Second, from 1990 onwards the rabbits had gradually returned and did the same job on several abandoned former sites.
Although he did not have local climate data for the Silver-spotted Skipper’s recovery, Jeremy Thomas suggested that at least two thirds of the Skippers’ recovery and their subsequent recolonization had resulted from both the increased grazing and the rabbits’ recovery. He was willing to attribute as much as a third of the butterflies’ recovery to climate warming between the 1970s and the present.
If, for argument’s sake, we accept that one-third of the recovery was due solely to CO2warming and ignore published arguments that the warming in England have been caused by the warm mode of the North Atlantic Oscillation9 (and recent cooling by the cool mode), habitat improvements still account for at least two-thirds of the skippers’ expansion. Furthermore, the Silver-spotted Skipper had yet to expand further northward than its previous 1920s boundary. Yet that was Parmesan’s best example of a “coherent fingerprint of global warming” disruption! It was bad science, but the consensus flocked to it in agreement.
To date more than 3500 papers have referenced her interpretation as evidence of climate disruption. It is a consensus built on misleading results that hijacked legitimate conservation science. In contrast, Jeremy Thomas’ successful preservation of two species on the brink of regional extinction had unequivocally demonstrated that the long-term changes were due to the quality of the caterpillar’s habitat. Although weather change causes short-term fluctuations in butterfly populations, a change in habitat quality affects populations 100 times more powerfully than weather.8 But such successful conservation efforts do not get funded in the same way as global warming horror stories do, and Jeremy Thomas’ “Evidence Based Conservation of Butterflies” has been cited by just 17 papers. Such a gross imbalance is a sad testimony to how the politics of climate change has corrupted the environmental sciences. I fear it is a hijacking that will only breed distrust for our legitimate green concerns in the future.The misguided obsession with CO2 and Parmesan’s faulty probabilistic model has supported equally bad analyses regards the fate of polar bears, penguins, frogs, pika and marine ecosystems, but that takes a whole book to document.
Why have so few scientists celebrated the good science like Jeremy Thomas’ when it empowers us with the critical understanding that allows us to locally build a more resilient environment? Why instead have thousands of scientists uncritically pushed false scenarios of catastrophic climate change? Although some skeptics have suggested a nefarious scientific conspiracy, I believe it demonstrates the ease with which the human mind embraces illusions. Once those scientists accepted CO2 warming as a reasonable explanation for ecological disruptions, despite never thoroughly examining the issue, they embraced whatever supported their choice. Their intellectual identity became intimately entwined with any validation of their chosen hypothesis. Like an avid sports fan, they feel great when their team is “winning” and distraught when their team is “wrong”. They brand anyone who challenges their hypothesis as a denier, stupid, traitor or infidel, and do not hesitate to brutalize anyone on the wrong team.
Robert Bolton wrote, "A belief is not merely an idea the mind possesses; it is an idea that possesses the mind." Once we make a choice, that choice possesses us. One of the more active areas of psychological research deals with “change blindness” and “choice blindness”. An international team from Harvard, the University of Tokyo, and Lund University in Sweden cleverly demonstrated how humans are hardwired to defend their choices despite contrary evidence. Test subjects were asked to choose who was the most attractive person in a set of two pictures displayed on the other side of the table. The researchers would then retrieve the pictures and ask the subjects to explain why they made their choice. However the lighting in the room was designed to allow the researchers to switch pictures and the test subjects were handed the picture they did notchoose. Most subjects never noticed the switch, and believing it was their choice proceeded to explain in great detail how the picture they never chose was the most attractive.10 A National Geographic series called Brain Games modified that experiment on a recent segment called “You Decide” and I urge you to watch it. Once you believeCO2 is destroying the world, any “search for a climate fingerprint” will always be “found” even when it is not there. Whether you are a CO2 advocate or skeptic, we are all victims to “choice blindness.” More critical analyses and respectful debate are the only paths to follow if we are ever to free ourselves from the shackles of our own illusions.
Literature Cited
1. Thomas, J., et al., (2005) Successful Conservation of a Threatened Maculinea Butterfly. Science, vol. 325, p.80-83.
2. Thomas, J., et al. (1986) Ecology and Declining Status of the Silver-spotted Skipper Butterfly (Hesperia Comma) in Britain. Journal o Applied Ecology. Vol. 23, p. 365-380.  
3. Parmesan, C. and Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, vol. 142, p.37-42
4. Thomas, C.D, et al., (2000) Ecological and evolutionary processes at expanding range margins. Nature, vol. 411, p. 577?581.
5. Thomas, C.D, et al., (2004) Extinction risk from climate change. Nature , vol. 427.
6. Thomas, C. D.  and Jones, T. M., (1993) Partial recovery of a Skipper Butterfly (Hesperia comma) from Population Refuges: Lessons for Conservation in a Fragmented Landscape. Journal of Animal Ecology, vol. 62, p. 472-481.
7. Thomas, J., et al. (1986) Ecology and Declining Status of the Silver-spotted Skipper Butterfly (Hesperia Comma) in Britain. Journal o Applied Ecology. Vol. 23, p. 365-380.  
8. Thomas, J et al. (2011) Evidence based Conservation of butterflies. J. Insect Cons., vol. 15, p. 241?258.
9.Hurrell, J. and Deser, C. (2009) North Atlantic climate variability: The role of the North Atlantic Oscillation.Journal of Marine Systems, vo. 78, p. 28–41.
10. Johansson, P., et al. (2008) From Change Blindness to Choice Blindness. Psychologia, vol. 51, p. 142-155

Adapted from the chapter Deceptive Extremes in Landscapes & Cycles: An Environmentalist’s Journey to Climate Skepticism by Jim Steele


Essay first posted to Watts Up With That as

Fabricating Climate Doom - Part 2: Hijacking Conservation Success in the UK to Build Consensus! 

Thursday, December 4, 2014

Polar Bears Endangered? Are Some Researchers Hiding Evidence?


PolarBeargate? Are Some Researchers Hiding Evidence? 

Suggesting impending climate doom, headlines have been trumpeting polar bears are “barely surviving” and “bears are disappearing” prompted by a press release hyping the paper Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline (hereafter Bromaghin 2014), which based on an ongoing US Geological Survey (USGS) study. Dr. Susan Crockford rightfully criticized the media’s fear mongering and failure to mention increasing bear abundance since 2008. She also pointed out that modelers have consistently failed to account for the negative impacts of heavy springtime ice here.
I want to reinforce Crockford’s posts, plus argue the problem is much worse than she suggested. Bromaghin 2014’s purported 25 to 50% population decline is simply not realThe unprecedented decline is a statistical illusion generated by the unrealistic modeling of polar bear survival from 2003 to 2007.  The highly unlikely estimates of low survival were made possible only by ignoring the documented effect of cycles of heavy springtime sea ice which forces bears to hunt outside the researchers’ study area. Although several of Bromaghin’s co-authors had previously published about negative impacts of heavy springtime ice, they oddly chose to never incorporate that evidence into the USGS models. The following demonstrates how the statistical illusion of “disappearing polar bears” was generated and I urge you to forward your concerns about USGS fear-mongering via subjective modeling to your congressmen and push them to fully investigate these USGS’ polar bear studies.

Perhaps polar bear researchers are just victims of confirmation bias. Co-authors of Bromaghin 2014 have long tied their authority, fame and fortune to predictions of impending polar bear extinctions due to lost summer sea ice.  In a 2008 Dr. Andrew Derocher predicted, “It's clear from the research that's been done by myself and colleagues around the world that we're projecting that, by the middle of this century, two-thirds of the polar bears will be gone from their current populations”. Dr Steve Amstrup, chief scientist for Polar Bear International and the USGS researcher that initiated the Beaufort Sea studies, previously published “Declines in ice habitat were the overriding factors determining all model outcomes. Our modeling suggests that realization of the sea ice future which is currently projected, would mean loss of ≈ 2/3 of the world’s current polar bear population by mid-century.”1Furthermore the USGS’ political reputation is on the line because their studies led to the listing of polar bears as “threatened” due to decreasing summer ice they attributed to CO2 warming. But why do USGS model estimates differ from Inuit experts and the Nunavut government who have steadfastly claimed it is the time of the most polar bears. And why does the USGS’ models differ from numerous surveys (i.e here and here) that support the Inuit claims?

There are 2 major flaws in USGS models:

1)   USGS Polar bear researchers tirelessly point to hypothesized stress due to lost summer sea ice, yet they completely ignore much more critical cycles of heavy springtime ice. As previously documented by Bromaghin’s co-authors, the condition of springtime sea ice determines the abundance and/or accessibility of ringed seal pups. Eighty percent or more of the bears’ annual stored fat is accumulated during the ringed seal pupping season that stretches from late March to the first week of May. At that time female bears emerge from their maternity dens to feast on ringed seal pups, and accordingly USGS mark and recapture studies focus virtually all their efforts during the month of April. Yet not one model has incorporated known changes sea ice during that same period. Is that data purposefully omitted because heavy spring time ice does not support their CO2-driven extinction scenarios?
2)   Furthermore heavy springtime ice forces movement outside the study area because it prevents local access to seal pups. Any movement outside the study area prevents subsequent recapture and can erroneously cause models to assume emigrant bears are dead. That false assumption creates lower survival estimates which then dramatically lower population estimates. Misinterpreting a temporary or permanent exodus away from a stressful local environment was the same critical error that led to bogus extinction claims for the Emperor Penguins.  Coincidently one modeler, Hal Caswell, created both models falsely suggesting Emperor Penguins and Polar Bears are both on the verge of extinction.

Why Spring Ice Conditions Are More Critical than Summer Ice.

South Beaufort Sea bears increase their body weight primarily by binging on ringed seal pups, and the bears’ springtime weight gains are huge. Researchers reported capturing a 17-year-old female, with three cubs-of-the-year, in November 1983 when she weighed just 218 lbs. Her weight would have continued to drop, as it does for all bears, throughout the icy winter. Weights do not increase until seal pups become available in late March and April. But after gorging on seal pups, she was recaptured in July and weighed 903 lbs, a four-fold weight change in just 4 months. 2 (her picture is below). The ability to rapidly gain weight, hyperphagia, evolved as a crucial survival strategy to take advantage of abundant but temporary food sources. Springtime ice conditions govern their access to the fleeting availability of ringed seal pups.
Polar Bear Quadruples Weight on Bay Ringed Seals
Fat Polar Bear
In 2001, Bromaghin 2014 co-author Stirling described the negative impacts of heavy rafted springtime ice. 
“In the eastern Beaufort Sea, in years during and following heavy ice conditions in spring, we found a marked reduction in production of ringed seal pups and consequently in the natality of polar bears.” 
Stirling noted it took about 3 years for both seal and bear populations to rebound. Stirling also reported the South Beaufort Sea undergoes ~10-year cycles of such heavy ice, and those stressful cycle had been observed in the 70s, 80s and 90s. 5 The most recent cycle of heavy ice is well documented and occurred precisely when bears increasingly exited the study area from 2003 to 2007.
In 2008, Bromaghin 2014 co-authors Stirling, Richardson, Thiemann, and Derocher published Unusual Predation Attempts of Polar Bears on Ringed Seals in the Southern Beaufort Sea: Possible Significance of Changing Spring Ice Conditions10 Those researchers had observed that “unusually rough and rafted sea ice extended for several tens of kilometers offshore in the southeastern Beaufort Sea from about Atkinson Point to the Alaska border during the seals’ breeding season from 2003 through 2006”, precisely when their models calculated low survival and a rapid decline in the polar bear population.
Those researchers reported 


heavy ice reduces the availability of low consolidated ridges and refrozen leads with accompanying snowdrifts typically used by ringed seals for birth and haul-out lairs.” And they observed, “Hunting success of polar bears (Ursus maritimus) seeking seals was low despite extensive searching for prey. It is unknown whether seals were less abundant in comparison to other years or less accessible because they maintained breathing holes below rafted ice rather than snowdrifts, or whether some other factor was involved.“ 

(Forcing bears to claw through rafted ice gives the seals ample time to escape.) Polar bears never defend territories. Instead polar bears are highly mobile. Dependent upon seal pups for most of their annual energy supply, a supply that varies annually, bears simply migrate to regions with greater seal abundance.
After giving birth and completing their annual molt by late June, most ringed seals migrate out to sea to fatten and are no longer available to the bears. After late June the amount of sea ice is no longer important habitat for ringed seals.So any correlations with summer sea ice extent from August to November have a relatively insignificant impact on survival. In fact, more open water benefits seals. In a previous essay, Why Less Summer Ice Increases Polar Bear Populations, I explained why ringed seals avoid thick multi-year ice, and why more open water later in the season benefits the whole food web. Bromaghin 2014’s co-author Stirling previously co-authored a paper reporting ringed seals must feed intensively in the open waters of summer in order to store the fat needed to survive the winter, and that seals suffer when sea ice is slow to break up4
He pointed out that in 1992 when breakup of sea ice was delayed by 25 days,the body condition of all ringed seals declined resulting in declining body condition of bears. To supplement their diet, bears will feed on a wide array of alternative items from whale carcasses, walruses to geese eggs. Despite the 2ndlowest extent of Arctic summer ice in 2007, researchers on Wrangel Island reported fatter bears than they had previously documented.6 All the evidence suggests summer ice is far less critical than the condition of springtime ice. So is the erroneous focus on summer ice conditions merely driven by researchers predictions that rising CO2 will cause widespread polar bear extinctions in 30 years?

 Movement Lowers Survival Estimates which Lowers Population Estimates

Bromaghin 2014 authors acknowledged that the observed movement could bias model results, but simply dismissed the observed transiency of wandering bears writing, 
“The analyses of movement data suggested that Markovian dependency in the probability of being available for capture between consecutive years remains a potential source of bias. However, we view these results with some caution because of the small sample sizes and prior evidence that bears prefer ice in waters over the narrow continental shelf. Further, there is no reason to suspect behavior leading to non-random movement during the spring capture season changed during the investigation.” 
But their dismissal is nothing less than dishonest. Bromaghin 2014 authors had indeed observed that heavy springtime ice resulted inreduced hunting success and reduced body condition and would force bears to hunt elsewhere.
Bromaghin 2014 authors were denying their own evidence. A subset of bears had been radio-collared in order to track their movements. Between 2001-2003 when their study area experienced normal springtime ice conditions, researchers estimated high survival probability and high abundance, and only 24% of the radio-collared females had wandered outside their study area making them unavailable for recapture. In contrast during the years of heavy springtime ice between 2004 and 2006 researchers estimated unprecedented low survival, low abundance and observed an increased number of collared females outside the study area doubling to 47% in 2005 and 36% in 2006. 7,9 Yet Bromaghin 2014 argue  “there is no reason to suspect behavior leading to non-random movement during the spring capture season changed during the investigation.”
A previous study by Amstrup had mapped the range over which radio-collared bears travelled each year. From his 3 examples illustrated below it is clear that polar bears are not always found in the same place each year. Furthermore in accordance with the changing availability of seal pups due to cycles of heavy springtime ice, he reported polar bears exhibited their lowest fidelity to any given area during the spring pupping season. Finally Amstrup’s map shows bears naturally wander outside the boundaries of the study areas searching for food. Because researchers restricted their search efforts to the east of Barrow Alaska, bears moving in and out of the Chukchi sea area have a far less recapture probabilities. Likewise bears that wander between Alaska and Canada will have different recapture probabilities because different amounts of effort were expended in each country.
polar bear movement out of study area
Polar Bear movement out of study area
Due to movement of bears in and out of the Chukchi Sea region, Amstrup had determined those movements heavily biased previous survival and abundance estimates. 8, 12 Bromaghin 2014 also report that the Chukchi Sea region is more productive than the Beaufort Sea. So it is highly likely that bears migrate between the Beaufort Sea study area and the Chukchi Sea in response to varying periods of localized heavy springtime ice and seal pup availability. So why does Bromaghin 2014 dismiss observed movement bias by arguing  “there is no reason to suspect behavior leading to non-random movement during the spring capture season changed during the investigation” and contrary to their own evidence suggest bears would remain in the more productive Chukchi Sea region. 
In 2001 Amstrup had previously estimated survival rates of South Beaufort bears as 96.2% and natural survival rates were 99.6% and a population could be more than 2500 bears in 1998. 3  Amstrup reported “polar bears compensate for a low reproductive rate with the potential for long life” (i.e high survival). Because movements of bears into and out of his study area had greatly biased his results he warned, “models that predict rapid increases or decreases in population size would not mirror reality.” Curiouser and curiouser he no longer heeds his own advice. Amstrup and his colleaguessuddenly embraced the unprecedented low survival rates of 77%, and a rapid 25 to 50% decline in the population between 2004 and 2008 as seen in their graph of estimated abundance.

Polar bear population lower due to springtime ice
South Beaufort Sea Polar Bear population estimates

In order for their model to generate that unprecedented low survival rate of 77%, (despite no observed change in the trend of body condition for 95% of Beaufort Sea bears) 11 modelers had to dismiss the observed movements outside their study area. Once Bromaghin’s authors had dismissed the significance of springtime movement, their models would interpret a lack of recaptures as an indicator of dead bears which then produced the illusion of a rapidly declining polar bear population.
Below is a table illustrating the simplified effects of historical survival estimates on abundance calculations (assuming no additions from new births and immigration). The numbers listed in the gray columns on the left are the USGS study’s actual number of bears captured annually, and the number of that total capture that were previously marked bears. As the study progressed and newly captured bears are marked, the pool of marked bears increases.  If the study area was a closed system, we would expect each year’s total number of captures to consist of an increasingly higher percentage of marked bears once the pool of marked bears was large enough. But each year the number of previously marked bears made up only ~50% of the total captures, suggesting a larger population was more likely than what was currently estimated, and that the length of this study was not yet long enough.
In the simplest models, abundance is determined by dividing the total number of bears captured each year by the percentage of captured marked bears from the pool of previously marked bears. (Read How science Counts Bears for a further discussion of mark and recapture studies) However the size of the pool of marked bears depends upon the bears’ survival probability. To illustrate, for each year I generated 3 different pools according to different historical survival estimates. The resulting change in abundance calculated from those 3 different survival probabilities are highlighted in yellow.
polar bear uncertainty
How survival estimates alter polar bear population estimates
 
If researchers assumed 100% survival, which is close to Amstrup’s 99.6% in his original study, (but with no additions from birth or immigration) then Bromaghin’s data would estimate a 2010 growing population of 2,255 bears. An estimate that is remarkably similar to Amstrup’s 1998 estimate of ~2500 bears. 
If the researchers assumed Amstrup’s 96% survival, a lower survival estimate due to the impact of hunting, then the 2010 abundance would be calculated at 1865 bears. Again remarkably close to Amstrup’s suggested abundance of 1800 for a hunted population.
In the 2006 USGS analyses7 the authors interpreted fewer recaptures as an averaged lower survival rate of 92%.  A 92% survival rate would produce a stable 2010 population estimate of 1664 bears, which is also 70% higher than Bromaghin’s results.  
The only way to generate a tragically declining bear population was to employ much lower survival estimates. And as evidenced by their graph below, that is just what they did for the period of heavy springtime ice with low seal availability and much greater movement out of the study area. When the springtime ice returned to normal so did the bears, and their estimated survival rates likewise returned to the expected high ~95%. The huge error bars in Bromaghin’s survival probabilities (see graph below) during those heavy ice years, illustrates the great uncertainty regards the actual fate of marked bears that were never recaptured.
polar bear survival increases with less heavy ice
Lower survival Polar Bear survival during heavy springtime ice
So we must question why these polar bear researchers ignored their co-author’s earlier warning, “models that predict rapid increases or decreases in population size would not mirror reality.” 
Were polar bear researchers blinded by climate change beliefs, or acting dishonestly?
SHARE THIS PAGE:



Literature Cited

1. Amstrup (2007) Forecasting the Range-wide Status of Polar Bears at Selected Times in the 21st Century  USGS Science Strategy to Support U.S. Fish and Wildlife Service Polar Bear  Listing Decision
2. Ramsay, M, and Stirling, I. (1988) Reproductive biology and ecology of female polar bears (Ursus maritimus). Journal of Zoology (London) Series A 214:601–634.

3. Amstrup, S. et al. (2001) Polar Bears in the Beaufort Sea: A 30-YearMark–Recapture Case History. Journal of Agricultural, Biological, and Environmental Statistics, Volume  6, Number 2, Pages 221–234

4. Chambellant, M. et al. (2012) Temporal variations in Hudson Bay ringed seal (Phoca hispida) life-history parameters in relation to environment.Journal of Mammalogy, vol. 93, p.267-281

5. Stirling, I. (2002)Polar Bears and Seals in the Eastern Beaufort Sea and Amundsen Gulf: A Synthesis of Population Trends and Ecological Relationships over Three Decades. Arctic, vol. 55, p. 59-76

6. Ovsyanikov N.G., and Menyushina I.E. (2008) Specifics of Polar Bears Surviving an Ice Free Season on Wrangel Island in 2007. Marine Mammals of the Holarctic. Odessa, pp. 407-412.

7. Regehr et al 2006, Polar bear population status in the southern Beaufort Sea: U.S.  Geological Survey Open-File Report 2006

8. Amstrup et al (2000) Movements and distribution of polar bears in the Beaufort Sea. Can. J. Zool. Vol. 78, 2000
 9.  Regehr, E., et al. (2010) Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. Journal of Animal Ecology 2010, 79, 117–127
10. Stirling, I. et al. (2008) Unusual Predation Attempts of Polar Bears on Ringed Seals in the Southern Beaufort Sea: Possible Significance of Changing Spring Ice Conditions.  Arctic, vol 61, p. 14-22.

 11. Rode, K. et al. (2007) Polar Bears in the Southern Beaufort Sea III: Stature, Mass, and Cub Recruitment in Relationship to Time and Sea Ice Extent Between 1982 and 2006. USGS Alaska Science Center, Anchorage, Administrative Report.
 12. Amstrup, S.  and Durner, G. (1995) Survival rates of radio-collared female polar bears and their dependent young. Canadian Journal of Zoology, vol. 73. P. 1312?1322.