Translate

Showing posts sorted by date for query Glaciers. Sort by relevance Show all posts
Showing posts sorted by date for query Glaciers. Sort by relevance Show all posts

Thursday, January 5, 2023

The Science of Solar Ponds Challenges the Climate Crisis

 

This is the transcript to the video at https://youtu.be/wl3_YQ_Vufo

Welcome everyone.

Today I want to demonstrate how the science of solar ponds can provide useful inexpensive heating, without the need for exotic materials. Furthermore, an understanding the science of solar pond heating will profoundly change how you view climate crisis narratives. Despite air temperatures averaging 68F, solar ponds can fantastically almost triple temperatures in their bottom layer to over 190F.

There are 2 major ways to raise a solar ponds' temperature:

Radiative heating and Dynamical heating.

Radiative heating, increases the amount of light energy. Sunny days raise temperatures more than cloudy days. But high solar pond temperatures can peak without any change radiative heating due to dynamical heating. Dynamical heating happens by suppressing convection & cooling, so that heat accumulates and drives very high temperatures.

Solar pond dynamical heating suppresses cooling by creating a density gradient, with fresh water at the surface and dense salt water at the bottom. Because the dense salty bottom water is heavier, it doesn't rise to the surface, despite warming to 190F.

Bottom layer heat can only ventilate via its micron thick skin surface. Unable to rise to the skin surface, heat rapidly accumulates in the bottom layer.

Solar pond science is based primarily on an 8th grade understanding that things less dense than water will float and denser things will sink.


A pot of water on your stove first heats the bottom layer. Heating makes the bottom layer expand and become less dense. That causes a convection current with the warmer water rising and cooler denser water from the top sinking.

But that dynamic doesn’t happen in a salt pond, because the bottom water's high salt concentrations overcome any heating effect.

Typical density demonstrations for 8th grade science use colored water to visualize salinity effects and are available online. For example, on the left side of the container, the yellow water is fresh. The blue-green water with added salt, here measured at 35 parts per thousand, was added but immediately sank below the fresh water. To continue the demonstration, green water separated on the right side had only half the salt, 17 ppt. When the separator was removed, that water inserted between the fresher and denser layers.



Adults have embraced this science, making layered cocktails using liqueurs with different densities, such as this Patriot drink for the 4th of July. Hopefully, adults can extend that understanding to better understand our changing climate.

Here's a closer look at salt pond dynamics. Ponds are typically just 10.5 feet deep. An upper layer of fresh water must be maintained at a depth of 1.6 feet. Temperatures in this layer never get hot enough to be useful as it is constantly cooled by radiating heat away or by losing it via evaporation and contact with the air.




The pond's bottom half is nearly 5 feet thick and saturated with salt. That water is too dense to rise and mix with the fresh surface layer. So unable to convect upwards and cool, the heat accumulates.

The trapped hotter bottom water is then circulated to heat a building or a greenhouse. Or the near boiling temperatures can drive turbines that generate electricity. Although solar ponds can never solve all our energy needs, the most promising environmental application is desalinization. Ocean water provides an endless cheap supply of salty water. Producing fresh water for desalinization reduces water withdrawal from our streams and rivers, thus benefitting aquatic animals. Desalinization would also reduce ground water withdrawals that have caused many coastal cities to sink closer to and below sea level.




The same dynamical heating seen in solar ponds is ubiquitous throughout nature. Antarctica's Lake Vanda (highlighted by red rectangle and red dot in upper left), provides a testimonial to the power of dynamical heating. Despite brutal sub-freezing air temperatures averaging from -22F to 5 F, heat accumulates in its bottom layers and reaches room temperature, 70F.




That amplification of solar heating is more amazing when you consider Lake Vanda receives very little sunshine for half the year, receiving just 40% of the sunshine entering tropical waters. Furthermore, the sunlight that reaches the bottom layers is minimal, being at the depth limit of sunlight penetration.

Nor does greenhouse warming from CO2 contribute at all. Researchers have shown Antarctica gets so cold, that uniquely, greenhouse gases there have a cooling effect. Like the bottom layer of a salt pond, it is the salty bottom layer of Lake Vanda that accumulates heat.

Although short wave energy from the sun and longwave energy from greenhouse gases are all measured in W/m2, they affect water very differently! (For those unfamiliar with Watts, it is simply a measure of energy per second. More Watts simply indicate more energy). Using 260 W/m2 as the average shortwave solar energy entering the water, the uppermost layers absorb the most energy. Without a salinity effect the upper layers are the warmest. Solar penetration then declines with depth. In completely clear water, absorbed solar energy is reduced to near zero at a 100 meters depth.




The added red line approximates the typical solar pond depth of 10.5 feet. At that depth, enough heat is absorbed and accumulates quickly enough for efficient practical use of its heat, by raising temperatures to over 180F. Deeper ponds are avoided because as solar penetration declines, the average bottom temperatures also decline making it less efficient for any practical use.



The generalized temperature gradient in lakes and oceans is just the opposite of what is observed in solar ponds, or Lake Vanda or everywhere there is a salinity effect. Without a salty layer to trap subsurface heat, upper layers are always warmer than deeper layers. The upper layer can have a uniform temperature because the winds and convection constantly mix the water. Below 200 meters, the deep water uniformly averages 39°F (4°C)

However, the mixed layer's temperature is not completely uniform. The skin layer is almost always cooler than the warmer mixed layer below. The skin layer averages just a few microns deep. But any heat absorbed in the mixed layer of the ocean, or a salt pond, can only escape via that very shallow skin layer. The skin layer is cooler because it is constantly losing heat to the atmosphere.


The mixed layer is warmer because its heated water must first rise next to the skin layer, where heat is slowly transported via conduction and warms the skin layer. Only then can the mixed layer's absorbed solar heat be radiated away or be lost via evaporative cooling. That delay in cooling causes a daily temperature cycle with a warm solar-heated diurnal layer that cools during the night. Similarly deeper waters will accumulate heat during the summer and ventilate it during the winter.

In contrast to deep solar heating, longwave greenhouse energy behaves very differently. Although greenhouse energy supplies nearly twice the energy to the skin layer, that energy does not penetrate any deeper than a few microns. Thus, unlike the delayed cooling of deeper layers, absorbed greenhouse heat can be radiated back to space immediately.




A 2018 ocean study measured 410 W/m2 of greenhouse longwave energy entering the ocean's skin surface, while simultaneously the skin surface radiated away 470 W/m2. The skin layer almost immediately radiated the 410 W/m2 of greenhouse heat back to space plus an additional 60 W/m2 of radiation from the rising solar-heated layers. In addition, the skin surface lost latent heat (LH) via evaporation and sensible heat (SH) via contact with the atmosphere.

Like the dense salty layers of a solar pond that trap and accumulate heat, oceans naturally have salty Barrier Layers, trapping heat that affects climate and extreme weather. Ocean "Barrier Layers" were first detected just 30 years ago, but since then 100s of studies point out the importance Barrier Layer heating and the need for such dynamical heating to be included more realistically in global climate models.



While this 1992 diagram may seem a bit confusing at first glance, the science of a Barrier Layer isn't much more complex than concepts taught in 8th grade.

The black line shows how measured temperatures change with depth. The blue line shows salinity changes and the red line shows density changes. Based on density, in this study the ocean's upper 40 meters represents the ocean's well "mixed layer" where temperature and salinity are homogeneous.

The middle layer highlighted in orange, is the Barrier Layer between 40 & 80 meters depth. Despite declining solar penetration, the Barrier Layer contains warm water similar to the upper mixed layer. Below the Barrier Layer is the colder thermocline where temperatures rapidly cool as solar penetration declines.

The increasing salinity and density of the Barrier Layer minimizes both any upward mixing of colder thermocline waters while trapping heat much longer than possible in the mixed layer. Barrier Layers are often detected because that trapped heat raises temperature higher than the upper mixed layers.



Several studies have recently shown that understanding ocean Barrier Layers provides valuable knowledge for predicting intense deadly hurricanes and cyclones. Without a Barrier Layer, hurricanes rapidly pull cool thermocline waters into the mixed layer, weakening the heat supply that drives the storms. In contrast, a thick Barrier Layer helps a storm maintain its intensity by inhibiting that upward circulation of cooler water.

In contrast to media fear mongering, the international disaster database, shows climate-related deaths since the 1920s have plummeted from nearly 250 per million to less than 10. Our increasing ability to predict and prepare for devastating storms has largely been responsible for this success. And our increasing understanding of the effects of Barrier Layers is improving that knowledge.




Also, as illustrated by this study in England, the number of deaths, (represented by the vertical bars) increase, as temperatures decrease (represented by the curves). Peak deaths correlate with the coldest temperatures from December through February. The good news is, there is reason to believe that any accumulation of heat in our oceans' Barrier Layers could drive warmer & milder temperatures and reduce winter deaths.

The Pacific Warm Pool is the earth’s greatest example of a natural solar pond. The warm pool contains the earth's warmest body of ocean water averaging between 82F and 90F. Because the warm pool generates the earth's greatest amount of heat and moisture which then gets transported across the world and affects global climates, it is nicknamed the "earth's climate heat engine". The warm pool has been increasing since the end of the Little Ice Age, correlated with our 150 years of global warming. Warm pool warmth has also sustained the greatest diversity and abundance of coral reefs, giving the region another nickname "the Coral Triangle".




The size of the warm pool and its stored heat increases during La Nina-like conditions, and La Nina-like conditions have predominated over the past 150 years. During La Nina -like conditions the trade winds remove surface water heated in the eastern Pacific and sweeps it westward to the warm pool. There, with the assistance of a strong Barrier Layer, heat is stored as deep as 200 meters.

The removal of warm surface water results in a cooler eastern Pacific which reduces cloud cover. That increases solar heating and increases evaporation, producing saltier surface waters.




The red regions here represent the areas where ocean evaporation exceeds precipitation, increasing surface salinity. The trade winds then transport that warm salty water westward, where the higher salinity drives dynamical heating of the warm pool.

The warm pool's freshwater layer, required to create a natural solar pond, is provided by the Intertropical Convergence Zone, or ITCZ. The ITCZ produces 32% of all global rainfall.

In this December 28th, 2022, screen shot from a national weather service model, the lighter blue represents the regions with the most rainfall, and ITCZ’s location. The observed heaviest rainfall over the warm pool completes the conditions needed to accumulate the warm pool heat that powers our earth's heat engine. Despite solar pond dynamics, warm pool temperatures never reach the extreme levels observed in solar ponds.




Three major dynamics prevent such extreme warming. First, warmer ocean temperatures enable more intense atmospheric convection that removes heat via evaporation. The second factor is an El Nino. During an El Nino the warm water stored deeply in the warm pool migrates eastward towards the Americas. That brings deeply stored warm water closer to the surface where it can now ventilate and shifts heavy rainfall to the eastern Pacific.

During each El Nino event (represented here by the red arrows), the ventilation of stored ocean heat confusingly raises the global air temperature. The media incorrectly attributes such warmer air temperatures to global warming. But counter-intuitively the earth is really cooling because heat that had been stored in the warm pool for years is now being ventilated back to space.




Long term changes in the Pacific Warm Pool over thousands of years provide scientists with critical information about the most important factors controlling the world's heat engine and thus our weather today.

During the Holocene Optimum around 10,000 to 8,000 years ago, the thermocline at the bottom of the warm pool, was over 1F warmer than today. Since that time, its temperature has steadily declined. In contrast, most climate models erroneously simulate steadily rising temperatures in the warm pool over the past 10,000 years.




These modeling failures largely happen when warm pool temperatures are incorrectly assumed to be driven by rising CO2. Unfortunately, dynamical heating by the warm pool's Barrier Layers is not well modeled.

Ice cores find that CO2concentrations were at a low point 10,000 years ago and have increased throughout the Holocene. Despite all the evidence that the warm pool cooled while CO2 concentrations increased, insufficient climate models still suggest that rising CO2 will cause catastrophic ocean warming.

The declining Holocene warm pool temperatures are better explained by increasing El Nino events. 10,000 years ago, El Nino events were more rare and most researchers suggest the Pacific ocean was predominantly in a La Nina-like state. (Note that the timeline direction is reversed in this graph).




Changes in the sun's strength have also played a role. Based on carbon-14 dating, the coldest period of the Holocene, the Little Ice Age, coincides with a weaker sun and sunspot minimums. Despite higher CO2 concentrations than the Holocene Optimum, during the Little Ice Age, Arctic sea ice reached both its greatest extent and thickness in 10,000 years.

Most researchers have determined the Pacific Ocean was in an El Nino -like state during the little ice age. Although slightly lower solar output during sunspot minimums, would only slightly weaken radiative heating, lower solar heating does weaken the trade winds causing a much greater effect on dynamical heating of the warm pool.




Extreme warm pool temperatures are also prevented because its accumulated heat is constantly exported. The pathways of warm ocean currents emanating from the tropics and moving towards the poles are illustrated here in pink.

Satellite data reveal where more heat enters the ocean than leaves (shown in red). The location of the greatest heat entering the ocean is consistent with La Nina like conditions. Regions shown in blue represent regions where exported tropical heat is ventilated and warms the air in that region, warmer than local radiative heat would.




I'll end here with an extreme example demonstrating the enormous impact of exported heat from ocean warm pools and its effect on the earth's climate. When antarctica was part of a single continent called Pangea, Antarctica was insulated from ocean currents, and accordingly much of Antarctica was glaciated. During the Cretaceous period, 94 million years ago, the continents were separating, allowing warm waters from the tropics to reach Antarctica. Despite being centered over the south pole, warm ocean currents promoted a warm Antarctic climate where dinosaurs thrived. Thick coal producing forests survived after the dinosaur extinctions.




As the continents continued to spread, about 35 million years ago, Antarctica became an island surrounded by the Antarctic Circum-polar Current, and once again tropical heat was blocked from reaching Antarctica.

As a result, despite CO2 concentrations 4 times higher than today, glaciers began forming in Antarctica, and Antarctica has continued to became so cold that only one vertebrate species, the Emperor Penguin, can survive its winter.




So before adopting bizarre solutions by egomaniacs like Bill Gates, who is working to block the sun and cool the planet, please examine all the science.




Likewise before believing, we are plunging into a human-caused climate crisis, please ask:

  • How does radiative and dynamical heating increase warm pool temperatures?

  • How does greenhouse energy possibly heat below the skin surface?

  • How does exported heat from warm pools affect our climate and what are the contributions of natural La Nina and El Nino-like conditions.

If you follow all the science undeniably affecting our climate, you just might sleep better tonight knowing there is no climate crisis.



Our democracy depends on a diverse array of good critical thinkers. So, please shun mindless group think. Instead embrace renowned scientist, Thomas Huxley’s advice:

“Skepticism is the highest of duties and blind faith the one unpardonable sin.”

so if you appreciate the science clearly presented here, science rarely presented by mainstream media then please click the like button, share and subscribe to this channel and leave a comment

Wednesday, September 7, 2022

ARE PAKISTAN’S FLOODS YOUR FAULT AND YOU SHOULD PAY?




ARE PAKISTAN’S FLOODS YOUR FAULT AND YOU SHOULD PAY?

below is the transcript to the video at https://youtu.be/uMBY1-ceo6Y

Today I want to separate the science of Pakistan’s devastating floods from the shamefully manipulative narratives by politicians and the media.

The worst is MSNBC’s attempt at public shaming by calling the catastrophe "climate racism”.




Pakistan’s government is in dire need of world bank bailouts due to past corruption and ineptitude. So it is not surprising that Foreign Minister Zardari blames a climate crisis and scape goats industrialized countries, stating “the citizens of Pakistan, are paying the price in their lives, their livelihoods for the industrialization of rich countries that has resulted in this climate change"

In contrast, honest scientists have stated what has been known for centuries, and I quote "the rivers of the Himalaya are susceptible to extreme floods on many timescales and future floods can be expected with or without significant human-induced climate change.”



First consider that Pakistanis have blamed their own government for many of their problems.

Critical of flood control policies, the adviser to chief minister of Baluchistan, Kaisar Bengali, reported: “dams create floods, dams don’t prevent floods…in 2010 the water that passed through the Indus was less than in 1976. Yet, it created more flooding because the river had risen 6-7 feet” due to the accumulation of sediments behind the dams.

Many accuse that flood control projects have favored wealthy landowners who benefit from developing certain floodplains while diverting waters to the floodplains inhabited by the nation’s poorest.

Environmental sciences professor Shafiqur Rehman said, “first we build dykes and spend millions of rupees on them & then we blow them up and drown people to save cities or other areas,”



And of course, there are widespread complaints about government corruption. Hashim Nisar Hashmi, at Pakistan’s university of engineering and technology said, “if maintenance of flood embankments had been adequately maintained by provinces, major losses would have been averted”

Now consider that Pakistan’s unique location has made it vulnerable to natural swings of dramatic weather between major droughts and major floods long before rising CO2 has had any impact. Since 1850 Pakistan has experienced 7 major droughts and 6 major floods. And it is common local knowledge that summer monsoons always cause flooding in some rivers somewhere in Pakistan.



The 2010 floods have been extremely well studied and those studies provide guidance in understanding the very similar 2022 floods.

As Khandekar (2010) published, “a rapid transition from El Niño to La Niña between spring and summer of 2010 appears to be the key element in triggering a vigorous monsoon of 2010 over the Indian subcontinent.”

Khandekar concluded, “the 2010 Pakistan floods, although seemingly unprecedented, were well within natural variability of the monsoonal climate over the Indian subcontinent. I have suggested before, there is an urgent need for an improved understanding of the many complex features associated with the Indian/Asian monsoon system”

So, to that end, this video intends to provide the public with an introduction to those complex dynamics driving Pakistan’s monsoon floods and droughts. The following information will provide the public with facts and a few critical thinking tools needed to decide if Pakistan’s floods were the result of your carbon-rich lifestyles, or just natural events long endured in Pakistan.



Indeed, natural La Nina / El Nino cycles have been demonstrated to contribute about 50% of monsoon variability.

During La Nina-like conditions the Bay of Bengal experiences heightened convection, and thus contributes greater quantities of water vapor to the region.

During El Nino conditions the center of convection migrates to the eastern pacific, thus reducing the water vapor that can be transported over India and Pakistan.

Additionally, the negative phase of the Pacific Decadal Oscillation makes La Nina-like conditions more frequent for 20 to 30 years, as has been the case since 1999.

So, consider that Pakistan’s heavy flooding in both 2010 and in 2022 happened during La Nina years.



Also consider that, since 1880 there is no trend in excess rainfall or drought conditions over the greater Indian region. There has been no unusual increase in recent decades in expected excessive rains either from la Nina or due to rising CO2.

So how does science explain recent floods?

Climate alarmists always frame every weather event in terms of warming from added CO2. Alarmists throw out a simple factoid that warmer air holds more water vapor. Thus, it should follow that increased rainfall must be due to rising CO2 warming. But that dynamic is often totally irrelevant for most weather catastrophes. Just consider that the warmest deserts hold the least water vapor.

In contrast most scientists understand there are many other factors affecting these complex weather events. Honest scientists will tell you that “increases in atmospheric water vapor content alone cannot explain changes in intense rain events due to rainfall's strong dependence on vertical motions”



So first consider that the Intertropical Convergence Zone, or ITCZ, marks where moisture laden trade winds concentrate their water vapor while their convergence forces that air to rise, where it then cools, condenses, and precipitates.

Due to that dynamic, the world's narrow ITCZ band accounts for 32% of all global precipitation.

When the ITCZ follows the sun's seasonal path northward. It brings the wet season to India and Pakistan.

When the ITCZ retreats southward in the winter, they experience their dry season.



Research has also demonstrated that due to changes in the earth's orbit and axis tilt, the earth has been steadily cooling for the past 8 thousand years and accordingly the ITCZ’s northern limits have progressively moved towards the equator.

During the Holocene Optimum when the ITCZ was furthest north, monsoon intensity was the greatest in 100 thousand years.



The furthest southward migration of the ITCZ culminated during the little ice age, reducing monsoon rainfall and coinciding with devastating droughts across southern Asia. A combination of an extreme southward ITCZ and El Nino-like conditions produced the drought and great famine of 1876-1878 resulting in over 7 million deaths, with India being hit hardest.



Rainfall does not fall equally across the Indian sub-continent. The so-called monsoon zone" parallels the ITCZ’s current orientation. But the winds lose moisture as they travel westward from the Bay of Bengal and move inland towards Pakistan.



Winds over the Arabian Sea from the southwest typically bring the greatest rainfall to India’s west coast and sometimes into Pakistan when the winds curl to the northwest.

As reported by Kumar (2010) rainfall over India does not provide any evidence of a global warming trend. 3 major regions of India have declining rainfall while 2 others have increasing trends. And when all the sub-divisions of those regions are examined, the majority show neither increasing nor decreasing trends.



To be fair, CO2 global warming is not expected to increase rainfall everywhere or evenly, simply due to natural variations. This is especially true for the Indian Pakistan regions that experience huge natural extremes.

The Himalayan ranges will always prevent monsoon moisture from reaching further north. So heavy rains fall on the Himalayan southside, while north of the Himalaya is extremely dry.



Because the southwest winds bring abundant moisture across Bangladesh and into northeast India, and the intercepting mountains provide the needed vertical uplift, Mawsynram is the wettest city in the world, marked here by the red triangle, Mawsynram receives about 467 inches of rain per year, 20 times India’s average.

In contrast, the southwest winds only bring rain to Pakistan occasionally. The lack of moisture transport into Pakistan has created 5 different desert regions. And while beneath the tropic of cancer, clear skies and the sun's direct rays produce Asia’s hottest recorded temperatures.

Jacobabad in Pakistan’s southern Sindh region, marked by a red triangle, experiences temperatures as high as 125°F (51.7 °C) nearly every year during the month of May before the monsoons start to cool the region.

The nearby archeological site of Moen-Jo-Daro holds Asia’s record for highest recorded temperature with 128.3°F (53.5°C)).

Climate crisis barkers commonly suggest rising CO2 will simply make this natural variability worse. Often arguing wet regions will get wetter and dry regions drier. But Pakistan’s floods contradicted such climate crisis claims.



In summer 2022, the wettest regions of northeast India were the driest, as illustrated by reds and yellow. There was no change in the green regions, but India’s west coast received excessive rains.

That pattern suggests global warming did not add more water vapor to the atmosphere, but instead atmospheric circulation simply shifted moisture transport from eastern India into western India and Pakistan.



In the heavily 2022 flooded Sindh region, the desert city of Moen-Jo-Daro is the site of Asia’s record highest temperature. It was first built about 5000 years ago. Then abandoned after being buried in mud from heavy flooding. Exemplifying the region's erratic extreme weather, archeologists believe Moen-Jo-Daro was reclaimed and then abandoned at least 6 times over the past 3 thousand years until finally being buried by mud for the last time.

Unfortunately, the Sindh region's natural hot zone also provides fodder for global warming fear mongering. Despite Jacobabad temperatures reaching 125°f (51.7 °c) most years, the uardian fear mongered that 51°c in 2022 was “record-breaking”. But that is a total falsehood if monthly or yearly records are being considered.




Scientists expect severe weather when they observe a weather pattern known as a dry line. Frequent dry line formation in southern Pakistan and the Sindh region makes the region vulnerable to extreme thunderstorms and flooding whenever moisture transport from the Arabian sea increases.

When moist air from the Arabian sea moves northwestward and collides with denser dry air flowing eastward from Afghanistan and the Baluchistan highlands, a dry line forms and flooding can be expected.



Pakistan's summer 2022 heavy rainfall was a regional event. Despite the low average rainfall (illustrated in orange) in Pakistan’s Sindh region, the region experienced a 500% increase in rainfall (illustrated in green). A similar increase was observed in the dry highlands of Baluchistan further west.

In contrast, the normally high rainfall in the Himalayan region of Kashmir, was the same as it usually is.



Observations of shifting atmospheric circulation have recorded that More water vapor from Arabian sea (blue line) has been most recently transported into southern Pakistan while less water vapor is being transported from Bay of Bengal into northern Pakistan (green)

Accordingly, it is southern Pakistan that is experiencing the worst flooding and infrastructure destruction (marked in brown)

Still some climate alarmists argue that global warming is melting glaciers and increasing regional snow melt. They claim that melting is adding to the river flows and thus downstream flooding in the Sindh region.



To orient you, here we see the snowmelt from the Himalaya region (marked in green) forms the headwaters for all Asia’s major rivers, Indus, Ganges, the Yellow and the Yangtze rivers. Nearly a third of Pakistan’s Indus River, flows westward through the Himalaya Then turns southward and flows to Pakistan’s Sindh region and into the Arabian sea.

It is also argued that changes in mountain snow alters the atmospheric pressure gradient that drives the monsoon water vapor from the cooler ocean onto the warmer land. More snow reduces summertime warming and thus reduces the pressure gradient and reduces the monsoonal flow.



In contrast, bare ground heats faster. That increases the pressure gradient and pulls more moisture inland. However, this dynamic is again irrelevant for the Indus River.

Despite measurable glacier retreat in the eastern Himalaya, the Indus flows through the Karakorum range of the western Himalaya. It is home to what scientists have labeled the "Karakorum anomaly".

Several studies report that glaciers in the Karakorum are not melting, but stable and even advancing, and that should reduce monsoon rains over Pakistan.



Peak flows of the Indus River and its tributaries have been carefully measured since 1921 to monitor flood threats and irrigation needs. Those measurements further contradict claims that melting glaciers have increased monsoon flooding.

The Indus River flows are illustrated by blue bars and reveal a declining trend in stream flow. The data also illustrates that flow volumes can vary by 2 to 3 times, again illustrating the highly variable Pakistan climate.



The Karakorum also has a unique temperature history. Tree ring studies determined Karakorum temperatures were warmer in the 1600s than temperatures today, adding to the list of regions not experiencing a warming crisis.

Other natural weather dynamics affect the pressure gradient between the ocean and the land that controls the monsoon strength and location.

In the simplest of terms, the Madden Julian Oscillation's 30-to-60-day migrations across the Indian ocean throughout the year alters the monsoon pressure gradient by altering the Indian ocean's pressure systems on a weekly timescale.



The Madden Julia Oscillation contributes to the alternating monsoon pattern of active phases with heavy rains and suppressed phases with little to no rain.

Jet stream meanderings also generate alternating regions of high and low-pressure systems. This causes regions of increased convection alternating with regions of suppressed convection, as well as regions where the winds pull warm moist air northwards versus regions where cool drier air is pushed southwards.



Deep convection from the Madden Julia Oscillation can also initiate a global wave train of rising and sinking air that creates alternating low- and high-pressure systems. These wave trains interact with the jet stream which enable a pathway, or wave guide, for the wave train to follow.



A common wave train pattern that affects Pakistan and India, is called the " Silk Road Pattern " and it can have a significant impact on monsoonal flows. Again in the simplest of terms, the wave train alters the monsoon pressure gradient by altering pressure systems over land.

Furthermore, the latitude of this pattern varies over decades which alters the wave trains impacts. It has moved southward (negative values) in recent decades associated with more shifts in monsoon rainfall from eastern India to western India.



And to illustrate one final example of how the earth's natural oscillations have all conspired to produce Pakistan’s floods, consider how the North Atlantic Oscillation impacts the Silk Road wave train. When the North Atlantic Oscillation is in its positive phase, the jet stream remains further to the north, and monsoon rainfall in eastern India is strong.

However, when the North Atlantic Oscillation is negative, the jet stream and Silk Road Pattern dips southward. That weakens the monsoons in eastern India while promoting greater monsoon rains in Pakistan and northern china.



When CO2 warming predictions are contradicted by both observations and science, alarmist simply default to arguing CO2 warming is just making the climate go crazy. But again, science does not support such fanciful fear mongering.

Studies by Chen 2010 concluded “climate instability is above normal during cold periods”. “There is overwhelming evidence for increased climatic instability during the Little Ice Age over the past 1000 years in northwestern china"



And it seems to be the consensus that colder periods make climate more unstable or, dare I say, crazy. Leading climate alarmist, Michael Mann likewise wrote, "the Little Ice Age may have been more significant in terms of increased variability of the climate, rather than changes in the average climate itself."

Most people don’t have the time or background to take a deep dive into climate science and uncover its truths. But there are several catch phrases that should alert everyone that it is not the science, manipulative catastrophic narratives that are preying on your sincere concerns.



So, beware when you hear or read

You are guilty of climate racism

You are guilty of promoting climate inequities

You are guilty of eating meat because cow farts are bad for the climate

You are guilty of driving a gasoline powered vehicle because they cause more wildfires & heatwaves

You are guilty of creating a climate crisis So, just give us your money!

To be clear, I am not suggesting that you shouldn’t voluntarily donate to humanitarian aid for flood victims.

I am simply arguing, when you are being falsely shamed and berated with any of the above arguments suggesting it is your fault for Pakistan’s flood, it is very likely that the media and politicians are obscuring the true science of natural climate change and trying to manipulate you.

Science and our democracy depend on interactions within a diverse array of good critical thinkers, and from such interactions the best solutions will emerge. So, please shun mindless group think.

Instead embrace renowned scientist, Thomas Huxley's advice Skepticism is the highest of duties and blind faith the one unpardonable sin.

Thank you